Data Factory: Unleashing the Potential of the AI Industry
30 March 2021
Share
facebook1 facebook
twitter1 twitter
linkedin1 linkedin

Written by Jiangbo Yu, AI R&D Lead


As Google makes AI history by beating the world's "Go" champion in 2015, the industry began to usher in a deep learning wave. Industry and research entered a highly integrated period, in which many academic leaders have entered the industry and ready to show their skills. After several years of rapid innovation and development, deep-learning models are becoming increasingly mature in certain application areas. Simultaneously, artificial intelligence(AI) computing power is growing at a rate of ten times per year, providing a solid technical foundation for the widespread use of AI.


ADVANCE.AI has been practising in the direction of deep-learning applications for three years. As the business expands and the demand continues to grow, deep learning's main challenge gradually evolves from the model to the data itself. For example, in the ID OCR application area, the model has gradually converged, and how to efficiently obtain data has become the biggest bottleneck of the product.

 

The pain points in terms of data are mainly from:

  • A portion of the data is highly sensitive, such as personal identity information or medical data. The lack of valid data significantly affects the development of services.

  • The high volume of data annotation or the high cost of annotation leads to increased research and development costs.

AI needs to solve the most realistic problem of the cost before it can be widely used. How to reduce the cost of data? At First, we start by drawing the core distinction between approaches of deep learning models for labelled training data and weak supervision at a high-level: weak supervision is about leveraging higher-level and/or noisier input from subject matter experts (SMEs).1

How to get more labeled training data?-1

Figure 1 the core distinction between approaches of deep learning models for labelled training data and weak supervision2

 

The following are ADVANCE.AI's exclusive insights summarised from the continuing practices:

  • Semi-automated annotation:

    Using existing models to assist in an annotation can effectively reduce its cost, and manual adjustment of the automatic annotation results can improve the accuracy of annotation.

  • Using some generative models, such as simple rules or generative models, can be used to generate model training data.

  • Using Hard Example Mining:

    it is another effective way to reduce the cost of annotation is to narrow the scope of labelling, which requires applying Hard Example Mining to filter some data (such as false positives) to avoid invalid labelling, and these samples can help improve the accuracy of the model.

  • Adopting semi-supervised learning can help us improve data representation by leveraging the huge amount of unlabeled data available online.

  • Creating a standard data platform system can provide efficient, standard data annotation and learning feedback mechanisms. The system needs to provide channels for a large number of nonprofessionals to input their own data tags so that the system can learn accordingly and continuously evolve its decision-making capabilities.


Based on the above and the anticipation of Software 2.0, the importance of data processing in the AI industry is self-evident.

We believe that many industry practitioners also have a corresponding understanding of quickly and efficiently perform data processing operations through tools and platforms to realise standardised processes, get easier access to mass production of efficient models and improve data annotation worker's effectiveness. It will finally benefit the application of AI technology into various industries and significantly reduce AI application cost.


ADVANCE.AI's product you need to know

TDD (Training, Development and Data) is a machine-learning system independently developed by ADVANCE.AI, specialising in providing standardised model development and data processing functions. The system currently supports the rapid iterative development of all standard AI products and will support self-service user side AI functions in the future.

 

 

1. Sourced from http://ai.stanford.edu/blog/weak-supervision/
2. ditto.

Follow us:
facebook1 facebook
linkedin linkedin
Relevant company news